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Introduction

▶ What’s the meaning of ’exotic’ ?

▶ Why could non-commutativity induce exotic transitions?



Short Review

Model: Bχn̂:

f (x) ⋆ g(x) = e−
i
2χP0∧Jn̂ f (x + η)g(x + η)|η→0

= e−
i
2χ(P0⊗Jn̂−Jn̂⊗P0)f (x + η)g(x + η)|η→0

One needs to replace the normal product · with the ⋆ product.

For energy and angular-momentum eigenstates:

∆χn̂(σ)|1, 2⟩
=F (σ ⊗ σ)F−1|1⟩ ⊗ |2⟩

=|σ(1)⟩ ⊗ e−
i
2χ(Eσ(1)Jn̂−Jσ(1)P0)σe

i
2χ(E1Jn̂−J1P0)|2⟩

=e−
i
2χ(Eσ(1)Jσ(2)−Jσ(1)Eσ(2))e

i
2χ(E1J2−J1E2)|σ(1), σ(2)⟩

=e−iχ(E2J1−E1J2)|2, 1⟩



Adopt a notion:

F → F (x , y) : = e−
i
2χ(ExJy−JxEy )

F (x , y) = F ∗(y , x) = F−1(y , x)

Then
∆χn̂(σ)|1, 2⟩ = F 2(2, 1)|2, 1⟩

Or
∆χn̂(σ)F (1, 2)|1, 2⟩ = F (2, 1)|2, 1⟩

Intrinsic phase factors in front of states.



Fock space

We have proved:

|ψ⟩ = 1√
N!

∑
{n}

sgn{n}(I ⊗ I ⊗ I ...∆χn̂)...∆χn̂(σ{n})|1, 2, 3...N⟩

=
1√
N!

∑
{n}

sgn{n} ⨿N
i<j ,1 F [σ{n}(i), σ{n}(j)]×

|σ{n}(1), σ{n}(2), ...σ{n}(N)⟩



Proof

Mathematical Induction: (n, appearing times of ∆χn̂)
A trick:

F (σa ⊗ σb)F
−1

=σa ⊗ F [σa, ?]σbF
−1(a, ?)

=σa ⊗ σ
′
b

Red is an operator.
The first slot of F (?, ?) is determined by the front σ, and leave the
second slot to the latter, making it a new σ

′
carrying a

phase-producing operator.



∆χn̂(σ)|1, 2⟩ =σa ⊗ σ
′
b|1, 2⟩

let a act on |1⟩ and b act on |2⟩

=|σa(1)⟩F [σa(1), σb(2)]F−1(1, 2)|σb(2)⟩
=F [σ(1), σ(2)]F−1(1, 2)|2, 1⟩



(I ⊗∆χn̂)∆χn̂(σ) = (I ⊗∆χn̂)(σa ⊗ σ
′
b) = σa ⊗ (Fσ

′
b1 ⊗ σ

′
b2F

−1)

Fσ
′
b1 ⊗ σ

′
b2F

−1 = σ
′
b1 ⊗ F [σb1, ?]σ

′
b2F

−1(b1, ?) = σ
′
b1 ⊗ σ

′′
b2

Let a act on |1⟩, b1 act on |2⟩, and b2 act on |3⟩, we have

F [σa(1), σb1(2)]F−1(1, 2) from σ
′
b1

F [σa(1), σb2(3)]F [σb1(2), σb2(3)]F−1(1, 3)F−1(2, 3) from σ
′′
b2

and
(I ⊗∆χn̂)∆χn̂(σ) = σ ⊗ σ′ ⊗ σ

′′



1 from σa

F [σa(1), σb1(2)]... from σ
′
b1

F [σa(1), σb2,1(3)]F [σb1(2), σb2,1(3)]... from σ
′′
b2,1

F [σa(1), σb2,2(4)]F [σb1(2), σb2,2(4)]F [σb2,1(3), σb2,2(4)]... from
σ

′′′
b2,2

...
Subscripts of σ should not be confusing since they are only used to
denote the inheritance relationship and can be omitted once acting
on certain states.



For σ ⊗ σ
′ ⊗ σ

′′ ⊗ σ
′′′ ⊗ ...

F [σ(1), σ(2)]...×

F [σ(1), σ(3)]F [σ(2), σ(3)]...×

F [σ(1), σ(4)]F [σ(2), σ(4)]F [σ(3), σ(4)]...×

...



n=1: ∆χn̂(σ) = σ ⊗ σ
′
, ✓

n=N-1: suppose ✓
n=N:

(I ⊗ I ⊗ I ...∆χn̂)(I ⊗ I ...∆χn̂)...∆χn̂︸ ︷︷ ︸
N

(σ)

=(I ⊗ I ⊗ I ...∆χn̂)(σ ⊗ σ′ ⊗ σ
′′
...σ

′′′...)

=σ ⊗ σ′ ⊗ σ
′′
...F (σ

′′′... ⊗ σ
′′′...)F−1

=σ ⊗ σ′ ⊗ σ
′′
...σ

′′′... ⊗ σ
′′′′...

Q.E.D.



The initial 3-Particle state

X: ↑, ...
...
1S: ↑, ↓

|ψ⟩ = 1√
3!
{e−

i
2χE1s(2JX−1)|1+, 1−,X+⟩

−e−
i
2χE1s(−2JX+1)|X+, 1−, 1+⟩

+e−
i
2χE1s(−1−2JX )|X+, 1+, 1−⟩

−e−
i
2χ(−E1s−EX )|1+,X+, 1−⟩

+e−
i
2χ(E1s+EX )|1−,X+, 1+⟩

−e−
i
2χE1s(1+2JX )|1−, 1+,X+⟩}



The final 3-particle state

1S: ↓, ↑, ↓

|ϕ⟩fermion ≡ 0

A general statement:
In non-commutative spacetime with the Drinfel’d twist type
models, like θ-Poincare and Bχn̂, identical fermions (energy, angular
momentum, etc) are still forbidden.

A corrected PEP: The identical is not only for states, but also for
the front phase factors.
The identical fermions are forbidden.



Boson-Fermion Transition

In the regular spacetime and SM, fermions can indeed become
bosons, but they should be different particles, like e+e− → γ.

The fermionic/bosonic-ness of particles is definite. No intersection.
No potential can turn a fermion into a boson with the same
angular momentum (including spin), energy, and charge.

SUSY partners have a different spin.

In non-commutative spacetime, however, we can.



Suppose a†p is the creation operator for a kind of fermion, and b†p
for the same-type boson.

In regular spacetime:
If there is a transition turning a fermion into a same-type boson,

⟨0|bmbnVa†pa†q|0⟩ ≠ 0

Same-type: particles are correspondent one-to-one. For fermions,
⟨p, q|p, q⟩ = ⟨q, p|q, p⟩ = −⟨q, p|p, q⟩ = 1
Then it should be:

⟨0|bmbnVa†pa†q|0⟩ = ⟨0|bnbmVa†qa†p|0⟩



However,

bnbm = bmbn

a†pa
†
q = −a†qa

†
p

then
⟨0|bmbnVa†pa†q|0⟩ = −⟨0|bnbmVa†qa†p|0⟩

Such transition is prohibited by the spin-statistics.



In non-commutative spacetime, · → ⋆,

⟨0|bm ⋆ bn ⋆ V ⋆ a†p ⋆ a
†
q|0⟩

V could be a complex combination of creation/annihilation
operators, but to illustrate, we sloppily treat it as one.
By the twisted permutation algebra, it equals

−F 2(n,m)F 2(q, p)⟨0|bn ⋆ bm ⋆ V ⋆ a†q ⋆ a
†
p|0⟩

Once red = 1, Hallelujah!



red = −e−iχ[(EnJm−EmJn)+(EqJp−EpJq)]

V-independent

χ→ 0, either En,Eq, ... or Jn, Jq... should be extremely large.

How to account for it? Resort to the period of phase factor.



J → J

ℏ
∼ regular number, say, n

E → E ′ +
2π
nχ

then
e−

i
2χJE → e−

i
2χn(E

′+ 2π
nχ

) → −e−
i
2χJE

′

Keep p,q, n regular, set Em large enough, and E ′
m is the observed

energy.

A fermion(boson) with large enough energy or/and angular
momentum can effectively turn the system into the
bosonic(fermionic) with regular energy or/and angular momentum.



Tunnelling?

Somehow, 2π
χ is like an energy barrier, and the non-zero overlap

could be viewed as the tunneling effect.

Figure 1: barrier



The 3-particle final state

The final bosonic state is:

|ϕ⟩ = 1√
3!
{2|1+, 1−, 1+⟩+ 2e iχE1s |1+, 1+, 1−⟩

+2e−iχE1s |1−, 1+, 1+⟩}



Transition Amplitde

Aχ = ⟨ϕ|V |ψ⟩

Final state: 1S ⇒ The dominant channel: 2P → 1S .

The transition in regular spacetime is prohibited not because of the
disability of the potential, but rather of the vanishing final state
due to spin-statistics.
We can still use the regular V .



V : the SM potential inducing the particle to jump from N orbit to
N-i orbit, and
only relative to particles inN − 1,N − 2,N − 3...orbits.

The only non-trivial transition: X (2P) → 1S
A typical term would be like:

m̂⟨1+, 1−, 1 + |V |1+, 1−,X+⟩n̂
≡m̂⟨1 + |1+⟩n̂m̂⟨1 − |1−⟩n̂m̂⟨1 + |V |X+⟩n̂
=m̂⟨1 + |1+⟩n̂m̂⟨1 − |1−⟩n̂m̂⟨+|+⟩n̂⟨1|V |X ⟩



Note that

|X ⟩ = 1
2
(|X+⟩n̂ + |X−⟩n̂)

Recover another quantum number l :

|X+⟩n̂ → |X+, l = −1, 0, 1⟩n̂

average JX = −1
2 ,

1
2 ,

3
2

|X+⟩n̂ : =
1
4
(|X ,+, ln = −1⟩n̂ + 2|X ,+, ln = 0⟩n̂ + |X ,+, ln = 1⟩n̂)

= |+⟩n̂
1
4
(|X , ln = −1⟩+ 2|X , ln = 0⟩+ |X , ln = 1⟩)



Therefore,

|X ⟩ ≡ 1
8

∑
all

|X , s = ±1
2
, l = −1, 0, 1⟩n̂

One then could read ⟨1|V |X ⟩ as∑
J,J′

1
8
⟨1, J|V |X , J ′⟩

the summation of the final angular momentum configurations and
the average of the initial angular momentum configurations, which
is the regular transition amplitude detected by experiments.



Apply the spin-overlap:

m⟨α|β⟩n =
1
2
[1 + (−1)α−βm̂ · n̂]

Integrate the direction:∫
dΩm

4π
mi = 0,

∫
dΩm

4π
mimj =

1
3
δij



3!
−iAχ

⟨1|V |X ⟩

=
1
6
[sin(χE1s) + sin(2χE1s) + sin(3χE1s)]

−1
3
[sin(χ

E1s + EX

2
) + sin(χ

3E1s + EX

2
)]

+sin[χ(E1s − EX )]

∼4
3
χ∆E



Discussion

Surely, in regular spacetime one can also construct a bosonic state
for electrons, which is little more than turning "-" into "+".
However, such states are neither accountable nor approachable.

In the non-commutative spacetime, the non-zero overlap
undoubtedly implies its existence since
everything that could happen quantum mechanically happens.

Better, but not enough. Future works await.



Introduction Redux

▶ What’s the meaning of ’exotic’?

It violates PEP partly that although identical fermions are still
forbidden, fermions can share the same state via turning into
the same-type bosons.

▶ Why could non-commutativity induce exotic transitions?

The complex phase structure induced by non-commutativity
causes the non-zero overlap. The potential is not necessarily
beyond the SM, it’s the state that opens the new vista.



END.

Thanks!


	Introduction
	Short Review
	3-Particle
	Boson-Fermion Transition
	Transition Amplitude

