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1 T-Duality

This is PDF version of my report.

1.1 Preamble

”T” means ”Toroidal,” and literally, this duality is the duality of a
circle.

Before we get into the T-dual, let’s clarify a few subtle points.
1: One should not understand the intrinsic length of a string as naively

as the length used in everyday life. It is rather closer to a topological
property - a mere parameter. One can imagine strings living in the world of
Platonic ideas, and its projection onto the real world is what we generally
mean by length, which is responsible for the string tension. A string can
be shorter than an atom or longer than a galaxy, provided the energy is
enough.

2: The core of T-duality is a curled-up dimension, which was first
proposed by Kaluza and Klein in the 1920s to unify the electromagnetic
and gravitational fields. Einstein liked this idea but later found the radius
of this dimension should be fixed, which however violates the essence of
GR: the dynamic spacetime. Even accepting that this dimension is uniquely
determined, it is still unstable. Einstein eventually gave up on this idea. It
became a beautiful mistake in history.

3: We will mainly talk about curled one-dimensional space, so to avoid
tedious notation, we always omit the indices for regular dimensions.

4: Although it is intuitive to say that one dimension is curled into a
circle, sometimes it can cause some confusion because it is too heuristic.
When thinking of a circle, we usually embed it into a higher-dimensional
space, and wrongly imagine a projection onto it. We shall thus use the term
”periodic dimension” or ”compactification” to describe them.

1.2 The Amazing Adventure of Closed Strings

We generally do not curl the time dimension to avoid causal issues.
Take 2πR as the period of space dimensions, and then we discuss the closed
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string as an example.

1.2.1 Winding Number

Stretching a string, wrapping it m times around the compactified di-
mension, and then splicing the beginning and end into a piece, we can
produce a winding closed string, which cannot contract continuously to a
point. m is a topological invariant. The real length of the string is 2πRm

with the intrinsic energy being w = T × 2πRm = mR
α′ .

It also has momentum or angular momentum since it is now a ring. It
is determined by the Bohr quantization condition L = nh̄, n ∈ N+, so p =
L
R
= n

R
, where the natural unit is used, which can also be obtained by using

the group transformation by calibrating a state |x⟩ with position eigenvalues
and translating 2πR along the x-direction as eip2πR|x⟩ = |x + 2πR⟩ = |x⟩,
so p2πR = 2πn and p = n

R
.

So far, in addition to the vibrational term, we have two quantized
energies, p = n

R
and w = mR

α′ . The former also occurs in point-like particles,
but the latter, winding energy, is unique and yields interesting properties.

Surely, one might wonder what if we rolled up two or more dimensions
simultaneously? Would there be somewhat extended T-duality? The answer
depends on whether the manifold has a ”hole” or not. If two dimensions
form a smooth sphere, a one-dimensional closed string can always contract
continuously to a point, just like in flat spacetime. When there is a ”hole,”
let’s say the simplest ”donut,” it does not necessarily contract to a point.

Does the number of holes affect the T-duality?

1.2.2 equation of motion

The other dimensions are normal and disjoint, of which the solutions
are thus the same as the normal closed string solutions.

For the compactified dimension, there is a special periodic boundary
condition: X|σ=0 = X|σ=2π + 2πmR, compared with what we have solved
before, X|σ=0 = X|σ=2π, one can see a mere additional constant.

Now, as usual decomposing X into left and right waves: X = XL(τ +

σ) + XR(τ − σ) = XL(σ
+) + XR(σ

−), the period condition is: XL(σ
+ +
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2π) − XL(σ
+) = XR(σ

−) − XR(σ
− − 2π) + 2πmR. The constant term is

irrelevant since each side would cancel out mutually. The vibrational term
is related to the second derivative, so it should also be the same. Therefore,
only can the first-order term reflect the difference:

XL(σ
+) =

1

2
xL
0 +

√
α′

2
α̃0σ

+ + i

√
α′

2

∑
n ̸=0

α̃n

n
e−inσ+

XR(σ
−) =

1

2
xR
0 +

√
α′

2
α0σ

− + i

√
α′

2

∑
n ̸=0

αn

n
e−inσ−

From the period condition, we have α̃0 − α0 =
√
2α′w, this is the

difference between the first-order term, which should be zero for the regular
case as required by the level matching: the constant relates to the center
of mass coordinates, and the center of mass of left and right waves are
naturally the same for regular closed strings.

The winding, however, will affect it, so xL
0 and xR

0 are generally not
equal. Nontheless, given that the total constant term of XL + XR = X

should be the center of mass coordinate x0, we have: xL
0 = x0 + q0, xR

0 =

x0 − q0. Therefore,

X = XL +XR

= x0 +

√
α′

2
(α̃0 + α0)τ +

√
α′

2
(α̃0 − α0)σ + ...

This result may look puzzling, but let’s calculate the mass-center mo-
mentum: p = T

∫
Ẋdσ = T

∫
(ẊL + ẊR)dσ = 1√

2α′ (α̃0 + alpha0), and by
comparing it with another thing with the same unit: w = T

∫
(ẊL−ẊR)dσ =

1√
2α′ (α̃0 − α0), we have: X = x0 + α′pτ + α′wσ + ....

An interesting term appear - two quantized momenta, one related to
τ and another to σ. As we will see later, the T-duality in some measure
means the equivalence between these two momenta.

1.2.3 M2-spectrum

In string theory, the observable measure depends on the spectrum of
the M2 operator, so let’s discuss M2.
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The string constraint, Tαβ = 0, still has to be satisfied and has nothing
to do with the boundary conditions, so we have

(∂+XL)
2 = 0

= (

√
α′

2

∑
n

α̃ne
−inσ+

)(

√
α′

2

∑
p

α̃me−imσ+

)

=
α′

2

∑
p

∑
n

α̃p−nα̃ne
−ipσ+

⇒ Ln =
1

2

∑
n

α̃p−nα̃n = 0

⇒ L0 =
1

2
α̃2
0 +

1

2

∑
n<0

α̃−nα̃n +
1

2

∑
n>0

α̃−nα̃n

=
1

2
α̃2
0 + (Ñ − 1) = 0

where the conclusion of normal ordering is used. It is important to note
that constrain is a squared term, which implies the summation of indices,
involving all the flat and compactified dimensions.

For the compactified dimension, according to the equations of p and
w, the inverse solution is: α̃0 =

√
α′

2
(p + w), and the α̃0. One can see the

dependence of the flat dimension remains unchanged, so the above equation
is written again as: α′

4
[
∑

flat p
2 + (p+ w)2] + (Ñ − 1) = 0, that is.

M2 = (p+ w)2 +
4

α′ (Ñ − 1)

= (
n

R
)2 + (

mR

α′ )2 +
2

α′ (2Ñ +mn− 2)

The energy of particles living in a flat space should not be dependent
on the compactified dimension, so M2 = −

∑
flat p

2.
Similarly, we get the spectrum for (∂−XR)

2 = 0: M2 = ( n
R
)2+(mR

α′ )
2+

2
α′ (2N −mn−2), adding the two M2: M2 = ( n

R
)2+(mR

α′ )
2+ 2

α′ (N + Ñ −2).
By comparison, N + Ñ = 2Ñ + mn, i.e. N − Ñ = mn. It is the second
difference, which means that the level of the left and right waves can differ
by an integer multiple, which is related to the momentum and winding
number.

big circle small circle indistinguishable According to the already ob-
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tained M2 property, we find that doing.

R ⇐⇒ α′

R

m ⇐⇒ n

M2 is unchanged, it is easy to verify that at this time, p′ = mR
α′ = w,w′ =

n
R
= p. That is, exchanging p and w does not change the mass (or energy),

but what does this mean? What does it mean?
Recall what we got before: X = x0 + α′pτ + α′wσ + .... Denote the

spacetime coordinates after exchanging p and w are X ′ = x′
0+α′wτ+α′pσ+

..., which implies that if we will obtain two identical coordinate systems, X
and X’, by only knowing the energy spectrum. That there are two equivalent
interpretations of a physical phenomenon is called duality. The radiuses of
the compactified dimensions are inverse, and then large and small circles
are physically equivalent. The T-duality.

However, how to justify the x′
0? It is in principle different from x0

because the dimensional sizes have changed, and the center-of-mass coordi-
nates are naturally different. But what exactly is the difference?

Notice that the new first-order term can be constructed from the orig-
inal XL and XR: we define Y = XL −XR = q0 + α′wτ + α′pσ + .... Y and
X ′ should be the same since they have the same spacetime dimensions and
the same behavior of the closed string, so x′

0 = q0, that is, the center-of-
mass coordinates also vary due to the T-duality, and we replace X ′ by Y
afterward.

The classical analogy is regular in everyday life: a thick stick struck at
a low speed is not different from a thin stick struck at a high speed when
the pressure difference is not taken into account.

Note that the equivalence of these two in string theory comes from the
equivalence of the mutualy inverse radius.

1.3 The Amazing Adventure of Open Strings

Previously we only discussed the relation between closed strings and
compactified dimensions. Now let’s consider open strings.



1 T-DUALITY 7

However, unlike closed strings, the special property of open strings
comes from the fact that their endpoints have to be fixed on Dp − brane,
so the T-duality for open strings is a relation between Dp − brane.

1.3.1 Dp − brane

Imagine an N+1-dimensional spacetime, still compactify some dimen-
sions as a supercolumnar surface. Assuming that the whole supercolumnar
surface is a D-brane, i.e., DN − brane, the string can move freely in the
space, except that the momentum in the compactified dimension is quan-
tized: p = n

R
, and the meaning of each parameter is the same as before.

Since the open string can move freely, it can always contract contin-
uously to a point. There is no winding number, hence no corresponding
energy w. So the spectrum is M2 = ( n

R
)2 + 2

α′ (N − 1).
But if we directly dualize the compactified dimension, i.e. n

R
⇒ mR

α′ , the
spectrum is different from the original one. The T-duality of open strings
needs correction - the D-branes. First, dualize the radius of the compactified
dimension, and at the same time, fix the coordinates of the open strings in
this new tight dimension (change the boundary condition to DD-type) so
that it cannot move on this circle, at which point DN − brane becomes
DN−1 − brane.

In this way, it has no momentum, p=0. But meanwhile, since its end-
point is fixed on the curl dimension, it may be useful to write down the
endpoint coordinates X = 0, which is periodized, and then X = 2πmR′,
which intuitively looks like a straight line divided into an infinite number of
intervals of length 2πR, and the endpoints of the string can be connected
at the endpoints of any interval.

However, since the endpoints are restricted to these points, it is im-
possible to move freely to contract to a point. Here the winding numbers
conjure up.

Now, let us prove that the true length of an open string placed in
this way is 2πmR′. Denote the left and right waves of the open strings
solved by the periodized boundary condition as XL and XR. Suppose the
total coordinates is X = XL + XR in the original DN − brane spacetime.
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Inspired by the closed strings, we define the coordinates of the compact
dimension in the dual spacetime, i.e., DN−1 − brane, as Y=XL − XR =

q0 +
√
2α′α0σ +

√
2α′

∑
n ̸=0

1
n
αne

−inτsinnσ. Then.

Y (τ, π)− Y (τ, 0) =
√
2α′α0π = 2πmR′

where the original open string momentum p = α0√
2α′ = m

R
is used, as well

as the radius R′ = α′

R
after doing the dual transformation, so there is the

intrinsic energy w = T ×2πmR′ = mR′

α′ , so M2 = (mR′

α′ )2+ 2
α′ (N −1), which

is dual to the previous case of DN − brane.
It is the case of the T-duality for the open string.

1.4 Summary

We have not considered the commutator, electromagnetic field, and
whatnot. The very focus is the free bosonic string, which will not be affected
by D-branes. Thus the T-duality of the closed strings is not destroyed.

In summary, when

R ⇐⇒ α′

R

m ⇐⇒ n

Dp − brane ⇐⇒ Dp−1 − brane

the physics is unchanged. It is the T-duality.
Note that even though it says Dp−1 − brane, several dimensions being

compactified simultaneously are allowed, which could be called the donut
manifold.

Furthermore, T-duality tells us the open strings in a two-hole donut
are equivalent to the one being fixed on a point. Strange, but it is true.

1.5 Hodge-Duality and T-Duality

Consider a spacetime with a compactified dimension of R → 0 that
can barely move in this direction, and which, according to the T-duality,
is physically equivalent to R → ∞, i.e., unfolding it infinitely so that the



1 T-DUALITY 9

spacetime becomes an ordinary flat spacetime. The strings moving on a
minimal ring are equivalent to that on an ordinary spacetime.

How do we describe this unfolded dimension? Recall the previous
work that if X is the spacetime coordinate of that R → 0 dimension and
Y is the spacetime coordinate of the unfolded dimension, and: ∂τX =

∂σY, ∂sigmaX=∂τY .
Note partialαX = Fα is a two-dimensional vector with component 0

being p and component 1 being w, and ∂αY = F̃α is also a two-dimensional
vector with component 0 being w and component 1 being p. The two vectors
are equal in the sense of T-duality, which is another way of interchanging p
and w writing.

Introducing the two-dimensional Levi-Civita tensor ϵαβ, the above equa-
tion can be expressed as Fα = ϵαβF̃

β, i.e., these two vectors are linked by
the Hodge dual, which shows that they have orthogonality since it is easy
to verify FαF̃

α ≡ 0.
Also, since ∂αX = dX, then ddX = dFα = 0 = ∂τw − ∂σp, ddY =

dF̃α = 0 = ∂τp − ∂σw = ∂2
τX − ∂2

σX. The first term is constant and
is determined by the structure of the theory itself, while the latter is the
original equation of motion, or the conservation of energy when there is no
source (the constrain of Tαβ = 0 is given by the equation of motion).

Thinking of the Maxwell equation in a vacuum, which is very similar in
structure to the two conclusions above, and since the electromagnetic dual
is a 4-dimensional tensor Hodge dual, there is an analogy: (F̃ rewritten as
∗F )

dFα = 0 ↔ dFαβ = 0

d ∗ Fα = 0 ↔ d ∗ Fαβ = 0

In this sense, p and w are much like E and B. The size dual is very
similar to the electromagnetic dual. Did kaluza and klein have this in mind
when they built their theory? Is the so-called T-duality a two-dimensional
Hodge duality? Or for ten dimensions, is there such a Hodge dual?

Can this analogy be extrapolated? If we are talking about free bosonic
strings at the moment, does the fact that there are ”no magnetic monopoles”
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when there are interactions affect the physics of string theory to two mutu-
ally dual spacetimes?

1.6 Rescale

The equivalence of this size circle is a rare thing. Only with sand, you
can make a bunker sizing centimeters, but it is impossible to make a bunker
sizing meters due to the not-invariance of gravity, pressure, etc. Galileo
thought of this and believed that it is as important as his discovery of the
”principle of equivalence of inertial systems.”

So, in the everyday physical world, basically no such equivalence under
different dimensions, otherwise there is no need for quantum mechanics or
general relativity, and Newtonian mechanics can dominate the world. The
equivalence of small and large circles is a unique property of strings.

1.7 Further Questions

• T-duality also restricts the limiting size of dimensions since R ↔ α′

R

is physically invariant, then everything R <
√
α′ is equivalent to R >

√
α′, so

√
α′ seems to be the smallest size in this sense. It happens to

be the same magnitude as the Planck length.

• So far, the T-duality has involved the positive curvature as well as
zero curvature, but does it hold for negative curvature as well? For
example, the AdS spacetime. From the spectrum, the radii involved
in M2 are square terms, and thus it seems impossible to distinguish
between positive and negative curvature. If so, it is not only impossible
to distinguish between small and large circles, but also impossible to
distinguish between saddle and sphere... What if there is a geometry
that deals with R2 + 1

R2 instead of R? Would it be a the habitat of
T-duality?

• From GR’s point of view, spacetime is dynamic and can be curled given
enough energy. Then the equivalence of radius implies the equivalence
of the energy required to bend, which contradicts GR where different
energy yields different curvature. Also, it seems that the graviton in
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string theory is a free propagating closed string, which is not affected
by T-duality. how can T-parity be coordinated with GR?

• Let’s assume that the original compactified radius changes ∆R, ac-
cordingly, ∆p = − n

R2∆R and ∆w = m
α′∆R, adding these them to-

gether: ∆p + ∆w = (m
α′ − n

R2 )∆R, assuming that ∆R > 0, the total
rate of change of these two energies is monotonically increasing, taking
the zero point at

√
nα′

m
, converging to m

α′ , and after doing the dualiza-
tion , ∆p+∆w = ( n

α′ − mR2

α′2 )(− α′

R2∆R) = (m
α′ − n

R2 ) DeltaR, the total
rate of change function is the same.

However, in terms of the positive and negative of the function, the
total energy always decreases first, has a minimum at R =

√
nα′

m
, i.e.,

when the two energies are equal, and then increases afterward.

What should be the explanation for it?

...


