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1 Abstract

When considering the action of gravity, the momentum of an object in a finite region cannot
be infinite but will have an upper limit proportional to the size of the region. Based on this,
Adler et al. have corrected the HUP, obtaining many interesting results by approximate methods.
However, such corrections generally break the symmetry of position and momentum. In this paper,
I try to give an extension that maintains the symmetry and can yield those interesting results
in an analytical way. The extension also shows that the black hole undergoes a first-order phase
transition when it reaches the Planck scale by evaporation, and then the temperature is linearly
proportional to its mass and has negative entropy.

2 Introduction

The original argument of Adler et al is that considering a photon with an effective mass % and an
electron with mass m, then let them collide due to (Newtonian)gravity at distance L, the momentum
theorem tells us: [ G@Cﬂ#dt = mAuwv.

As an approximation, we use the force at the beginning to replace the real force which will become

larger and larger as they are closer and closer, and set % ~ At, then: G %% < m%—/)g. Since the

momentum of photon is exactly the momentum variance of the electron, we have:

Ap L
— = -Ap < AX 1
3 = A (1)

where [, = \/Z—? is Planck length.

The formula (1) is the outcome considering the effect of gravitational collision.

Another way to think it is that considering a box with limited size, Ax. Quantum mechanics tells
us the minimal momentum this box could have is &, that is, a quantum particle with the de
Broglie wavelength Az, while GR tells us the maximal momentum is carried by the black hole
whose horizon size is Ax. Suppose it’s a Schwarzschild black hole, then immediately, we have

Az = Cp = G%’Q/C), as same as formula (1).

The traditional way of revamping HUP is adding (1) into it literally, Az > Aip + %Ap. By further
considering string theory, AdS spacetime and whatnot, they have added more terms of higher order
of Ax and Ap, for instance: AzAp > A(1+aAp+a?Ap? + Az + B2 Ax?), which is called LEGUP.
Nevertheless, I thought these extra terms are physically obscure.

Other than this, there are two unsatisfactory points. Firstly, this extension breaks the readily



accepted symmetry between momentum and position. Secondly, the order of h ~ 10734, while

C% is 1073%. The equality of two factors turns a reciprocal function(Ap > &) into a quadratic

function(%Ap2 + h— ApAzx > 0), the effect must be unneglectable, it does not only rectify HUP,
but the whole structure of the quantum world, and I’'m personally willing to keep HUP. It might
also be viewed as a perturbation but the appearance of an extra small pre-factor is required, which
would propose another question.

Based on these, I thought we should view the effect of gravity from another aspect.

3 Extension

We insist three tenets:

e keep HUP, Az > i’p

2
o add (1), Az > 2Ap

e keep the balance of x and p

then I found a quite simple formula satisfying these tenets(after dimensionless-lize):

l, Az S h l,Ap
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If we treat is as a perturbation, then (2) becomes

AzA >h+5§A _a2lr

where the minus sign could be absorbed into «. This amounts to offer a term like ﬁ—g, which is
ugly and meaningless. We need to view it from another aspect.

Redefine: ?—: =a, %”Ap = b, then (2) becomes:

(6%
—4az=2b+
a

multiply ”"ab” at both side, ab(a — b) > fa — ab, when



are satisfied, (3) becomes ab > [, which is exactly AxzAp > Sh.
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The second requirement, a — b > 0, is actually Az > £ Ap, the bar imposed by gravity.

So in my viewpoint, equation (2), or (3), is not really a correction of the HUP but an extension
when gravity is taken into account. Such a strange form will expand the space of solutions and
the bar of gravity will cancel parts of solutions, and the remaining new solution is what we are
interested in.

The value of 3 is not critical because, by the experience from quantum mechanics, different systems
will give different factors, for example, the uncertainty relation of the S.H.O. is AzAp > h(n + %)
For simplicity, we set it to 1.

4 Analytic

When we focus on "a”, (3) would write as: a? + 1 — (3 4+ b)a > 0, and the solution is a <
min[b, 1] Ua > maz[b, $;

When we focus on ”b”, (3) is: b> +1— (a+ 2)b < 0, and the solution is min[a, 1] < b < maz[a, 1].

’a ’a
For example, let Az = %,m, when m > M, (M, is the Planck mass), then GmL/CQ < Ap < me, when

m<Mp,mc<Ap<GmL’/62.

The final solution is plotted as follows:
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Remarks about this figure:
2

e The blue diagonal line is Ax = C%Ap = %Ap, i.e. the upper limit of the bar exerted by
gravity, and the regions satisfying this constraint are the green regions on the right (regions

4 and 3).

e The blue curve is AxAp = h, i.e., the classical HUP limit, and the shaded regions above it,



2 and 3, are the regions of solutions allowed by the original HUP.

e The solution of (3) are the regions 1 and 3, a dual diagram that VAz; < [,,3Azy > [,
satisfying Apy = Apo, Ax1Axy = lg.

It’s easy to check when Ax = %m > [, the upper and lower limit of Ap are exactly what we
said before.

e Considering the restriction by the bar of gravity, the final practical solution is: the blue
straight line at the junction part of region 1 and region 4, plus region 3 and its boundary.

We see that the most important thing about the whole extension is that it gives a completely new
solution when Az < [,, while the original HUP solution in this zone is the gray region above,
namely, Ap becomes extremely large.

The gravity plays an indispensable role in this small scale, no longer making Ap explode due to
quantum fluctuations, but they two work together to restrict Ap to be linear with Ax.

5 Thermodynamics

Given the formula, kT = ncAp, where when n = ﬁ this formula gives exactly the Hawking
temperature and we treat it as a factor now, we can go into the thermodynamics.

Firstly, there is a T — Ax diagram:
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where T}, is the Planck temperature and the blue line boundary and the blue vertical line area are
the solution space.

We now illustrate it with the black hole, namely assuming Az = %”

e When Ax > [, the lower limit of temperature is k7" = ng%, which is exactly the Hawking
temperature, which means the black hole is the coldest object of the same size. Also, there
is an upper limit to the temperature due to gravity, which is kT = nmc?, i.e. all the energy
of the object becomes heat, which is intuitively acceptable.



e When Az = [,, the upper and lower temperature limits converge, reaching the Planck tem-
perature T,.

e When Az < [, the temperature takes only one form, nmc? /K, which means that the tem-
perature decreases linearly with size when the black hole evaporates to a size smaller than the
Planck scale. This similar result was previously obtained by Carr et al. in 2016, but mainly
by approximation.

5.1 Entropy
In the following part, we will choose to use either Az or m = 02% as the variable according to
convenience.
when Az < [, using aglsc =T, which gives:
G 2 A
S = ki = g EME BT (4)
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When Az > [, the entropy of the black hole is just Bekenstein-Hawking entropy, S = k(Mﬂ) =

k412 = k(Gm/c 2 _ Al—f, so we have the S — Az diagram:
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When Az < I,, S becomes negative. I'm not sure how to explain that exactly. (in quantum
entangled states, the conditional entropy is indeed negative?)

There is a subtle point that the RT formula is calculated under the AdS/CFT dual, however
the black hole does not evaporate in AdS spacetime, keeping its scale as same as the initial.
It consequently cannot be smaller than [,, because for those black holes created by quantum
fluctuations, Ap is inversely proportional to Az, and when Az reaches [, it will become a black
hole, and then continue to increase the energy will increase its size, for those coming from the
celestial evolution, the size are evidently larger than [,. It seems that the only way to probe the
sub-planckian region is by the evaporation of black holes



5.2 Phase transition

At Az = [, there is an entropy jump implying the latent heat: Q = TAS = T,k = Mc?.

. N 2
Consider the heat capacity, when Az > [,, C' = % = ai)]"éi3k = —%#, when Az < I,, C =

mc2
nmc?/k
indeed a phase transition.

=k, so at [, the heat capacity jumps from a negative value to a positive constant k, hence

We can also calculate the free energy. When Az > [,, F = U — TS = mc? — n%%%(ﬁp)z

and when Az < I, F = mc?

0,

— mczln% > 0. Here is the F' — m diagram:
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So on reaching the Planck mass, the black hole does not spontaneously continue to shrink and needs
to put into additional work MpC2, which reduces the entropy of the black hole and then releases
M,c? of heat.



