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1 Abstract

When considering the action of gravity, the momentum of an object in a finite region cannot
be infinite but will have an upper limit proportional to the size of the region. Based on this,
Adler et al. have corrected the HUP, obtaining many interesting results by approximate methods.
However, such corrections generally break the symmetry of position and momentum. In this paper,
I try to give an extension that maintains the symmetry and can yield those interesting results
in an analytical way. The extension also shows that the black hole undergoes a first-order phase
transition when it reaches the Planck scale by evaporation, and then the temperature is linearly
proportional to its mass and has negative entropy.

2 Introduction

The original argument of Adler et al is that considering a photon with an effective mass p
c and an

electron with mass m, then let them collide due to (Newtonian)gravity at distance L, the momentum

theorem tells us:
∫
G (p/c)m

r2
dt = m∆v.

As an approximation, we use the force at the beginning to replace the real force which will become
larger and larger as they are closer and closer, and set L

c ≈ ∆t, then: G (p/c)m
L2

L
c ⩽ m∆X

L/c . Since the
momentum of photon is exactly the momentum variance of the electron, we have:

G
∆p

c3
=

l2p
ℏ
∆p ⩽ ∆X (1)

where lp =
√

ℏG
c3

is Planck length.

The formula (1) is the outcome considering the effect of gravitational collision.

Another way to think it is that considering a box with limited size, ∆x. Quantum mechanics tells
us the minimal momentum this box could have is ℏ

∆x , that is, a quantum particle with the de
Broglie wavelength ∆x, while GR tells us the maximal momentum is carried by the black hole
whose horizon size is ∆x. Suppose it’s a Schwarzschild black hole, then immediately, we have
∆x = Gm

c2
= G(p/c)

c2
, as same as formula (1).

The traditional way of revamping HUP is adding (1) into it literally, ∆x ⩾ ℏ
∆p +

l2p
ℏ ∆p. By further

considering string theory, AdS spacetime and whatnot, they have added more terms of higher order
of ∆x and ∆p, for instance: ∆x∆p ⩾ ℏ(1+α∆p+α2∆p2+β∆x+β2∆x2), which is called LEGUP.
Nevertheless, I thought these extra terms are physically obscure.

Other than this, there are two unsatisfactory points. Firstly, this extension breaks the readily



accepted symmetry between momentum and position. Secondly, the order of ℏ ≈ 10−34, while
G
c2

is 10−35. The equality of two factors turns a reciprocal function(∆p > ℏ
∆x) into a quadratic

function(
l2p
ℏ ∆p2 + ℏ−∆p∆x > 0), the effect must be unneglectable, it does not only rectify HUP,

but the whole structure of the quantum world, and I’m personally willing to keep HUP. It might
also be viewed as a perturbation but the appearance of an extra small pre-factor is required, which
would propose another question.

Based on these, I thought we should view the effect of gravity from another aspect.

3 Extension

We insist three tenets:

• keep HUP, ∆x ⩾ ℏ
∆p

• add (1), ∆x ⩾
l2p
ℏ ∆p

• keep the balance of x and p

then I found a quite simple formula satisfying these tenets(after dimensionless-lize):

α
lp
∆x

+
∆x

lp
⩾

ℏ
lp∆p

+ β
lp∆p

ℏ
(2)

If we treat is as a perturbation, then (2) becomes

∆x∆p ⩾ ℏ+ β
l2p
ℏ
∆p− αl2p

∆p

∆x

where the minus sign could be absorbed into α. This amounts to offer a term like ∆p
∆x , which is

ugly and meaningless. We need to view it from another aspect.

Redefine: ∆x
lp

= a,
lp
ℏ ∆p = b, then (2) becomes:

α

a
+ a ⩾ b+

β

b
(3)

multiply ”ab” at both side, ab(a− b) ⩾ βa− αb, when

• α = β > 0

• a− b ⩾ 0
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are satisfied, (3) becomes ab ⩾ β, which is exactly ∆x∆p ⩾ βℏ.

The second requirement, a− b ⩾ 0, is actually ∆x ⩾
l2p
ℏ ∆p, the bar imposed by gravity.

So in my viewpoint, equation (2), or (3), is not really a correction of the HUP but an extension
when gravity is taken into account. Such a strange form will expand the space of solutions and
the bar of gravity will cancel parts of solutions, and the remaining new solution is what we are
interested in.

The value of β is not critical because, by the experience from quantum mechanics, different systems
will give different factors, for example, the uncertainty relation of the S.H.O. is ∆x∆p ⩾ ℏ(n+ 1

2).
For simplicity, we set it to 1.

4 Analytic

When we focus on ”a”, (3) would write as: a2 + 1 − (1b + b)a ⩾ 0, and the solution is a ⩽
min[b, 1b ] ∪ a ⩾ max[b, 1b ];

When we focus on ”b”, (3) is: b2 +1− (a+ 1
a)b ⩽ 0, and the solution is min[a, 1a ] ⩽ b ⩽ max[a, 1a ].

For example, let ∆x = Gm
c2

, when m > Mp (Mp is the Planck mass), then ℏ
Gm/c2

⩽ ∆p ⩽ mc, when

m < Mp, mc ⩽ ∆p ⩽ ℏ
Gm/c2

.

The final solution is plotted as follows:
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Remarks about this figure:

• The blue diagonal line is ∆x = G
c3
∆p =

l2p
ℏ ∆p, i.e. the upper limit of the bar exerted by

gravity, and the regions satisfying this constraint are the green regions on the right (regions
4 and 3).

• The blue curve is ∆x∆p = ℏ, i.e., the classical HUP limit, and the shaded regions above it,
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2 and 3, are the regions of solutions allowed by the original HUP.

• The solution of (3) are the regions 1 and 3, a dual diagram that ∀∆x1 < lp,∃∆x2 > lp,
satisfying ∆p1 = ∆p2,∆x1∆x2 = l2p.

It’s easy to check when ∆x = Gm
c2

> lp, the upper and lower limit of ∆p are exactly what we
said before.

• Considering the restriction by the bar of gravity, the final practical solution is: the blue
straight line at the junction part of region 1 and region 4, plus region 3 and its boundary.

We see that the most important thing about the whole extension is that it gives a completely new
solution when ∆x < lp, while the original HUP solution in this zone is the gray region above,
namely, ∆p becomes extremely large.

The gravity plays an indispensable role in this small scale, no longer making ∆p explode due to
quantum fluctuations, but they two work together to restrict ∆p to be linear with ∆x.

5 Thermodynamics

Given the formula, kT = ηc∆p, where when η = 1
4π this formula gives exactly the Hawking

temperature and we treat it as a factor now, we can go into the thermodynamics.

Firstly, there is a T −∆x diagram:
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where Tp is the Planck temperature and the blue line boundary and the blue vertical line area are
the solution space.

We now illustrate it with the black hole, namely assuming ∆x ≡ Gm
c2

.

• When ∆x > lp, the lower limit of temperature is kT = η ℏc3
Gm , which is exactly the Hawking

temperature, which means the black hole is the coldest object of the same size. Also, there
is an upper limit to the temperature due to gravity, which is kT = ηmc2, i.e. all the energy
of the object becomes heat, which is intuitively acceptable.
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• When ∆x = lp, the upper and lower temperature limits converge, reaching the Planck tem-
perature Tp.

• When ∆x < lp, the temperature takes only one form, ηmc2/K, which means that the tem-
perature decreases linearly with size when the black hole evaporates to a size smaller than the
Planck scale. This similar result was previously obtained by Carr et al. in 2016, but mainly
by approximation.

5.1 Entropy

In the following part, we will choose to use either ∆x or m = c2∆x
G as the variable according to

convenience.

when ∆x < lp, using
∂mc2

∂S = T , which gives:

S = kln
m

Mp
= kln

Gm/c2

lp
=

∆x

lp
(4)

When ∆x > lp, the entropy of the black hole is just Bekenstein-Hawking entropy, S = k( m
Mp

)2 =

k A
4l2p

= k (Gm/c2)2

l2p
= ∆x2

l2p
, so we have the S −∆x diagram:
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When ∆x < lp, S becomes negative. I’m not sure how to explain that exactly. (in quantum
entangled states, the conditional entropy is indeed negative?)

There is a subtle point that the RT formula is calculated under the AdS/CFT dual, however
the black hole does not evaporate in AdS spacetime, keeping its scale as same as the initial.
It consequently cannot be smaller than lp, because for those black holes created by quantum
fluctuations, ∆p is inversely proportional to ∆x, and when ∆x reaches lp it will become a black
hole, and then continue to increase the energy will increase its size, for those coming from the
celestial evolution, the size are evidently larger than lp. It seems that the only way to probe the
sub-planckian region is by the evaporation of black holes
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5.2 Phase transition

At ∆x = lp, there is an entropy jump implying the latent heat: Q = T∆S = Tpk = Mpc
2.

Consider the heat capacity, when ∆x > lp, C = U
T = ∂mc2

∂η ℏc3
Gmk

= −Gk
ℏcη

1
m2 , when ∆x < lp, C =

mc2

ηmc2/k
= k, so at lp, the heat capacity jumps from a negative value to a positive constant k, hence

indeed a phase transition.

We can also calculate the free energy. When ∆x > lp, F = U − TS = mc2 − η ℏc3
Gm

1
k
k
η (

m
Mp

)2 ≡ 0,

and when ∆x < l, F = mc2 −mc2ln m
Mp

> 0. Here is the F −m diagram:
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So on reaching the Planck mass, the black hole does not spontaneously continue to shrink and needs
to put into additional work Mpc

2, which reduces the entropy of the black hole and then releases
Mpc

2 of heat.
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