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摘要

我们在本文中先对基础的黑洞热力学进行了描述，并对一些重要的基础公式做出了证明，之后以核自旋系
统为例探讨了负温度系统，提出了总能量具有上限一维谐振子作为拟合负温度的模型，并给出了具体公式，之
后以 Exotic BTZ 作为对象，具体探讨了黑洞中的负温度情况，发现其与内外视界的相对运动有关，最后讨论
了 Exotic BTZ 黑洞的相变问题。
关键词：负温度 谐振子 黑洞热力学 Exotic-BTZ 黑洞
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1 导论

经典的 Einstein 场方程是一个不考虑热运动的方程，“只受引力（或者严格地说不受力）的粒子沿时
空中测地线运动”对于单个粒子是成立的，但对于温度不为零的粒子群体，势必会存在 Brown 运动。还
有黑洞的奇点——经典的广义相对论所预言的所有物质都压缩在一个点上的状态，这种状态显然是绝对零
度的。
然而，简单地把热运动或者统计物理引入广义相对论中必然会引起矛盾，假如黑洞具有温度，那么它

也必然会向外辐射粒子，这就与经典相对论的要求冲突，但最奇妙的是，Hawking 在 1972 年的著名文章
中指出，弯曲时空中的量子场会造成辐射——Hawking 辐射，也就是量子效应确实为时空引入了温度，这
一点在 1976 年 Unruh 的工作后得到进一步巩固。
于是我们看到，经典相对论与量子场论那难以调和的矛盾在语言黑洞的热力学性质上表现得淋漓尽

致，任何想要统一引力和量子的理论都必须通过有关黑洞的一系列检验。
而更进一步，对有温度的物体，增加其能量将按比例改变熵，当我们把一把椅子丢进黑洞的时候，有

关椅子的信息丢失了，转化为了黑洞的熵，而黑洞会因为 Hawking 辐射不断蒸发直至消失，辐射的谱是
完全由温度决定的，无法给出关于椅子的信息，所以最后椅子的信息会随着黑洞的蒸发而彻底消失——整
个过程中信息不再守恒，这违反了量子力学的幺正演化——U → eiHtUe−iHt——的要求。对这个问题的思
考引出了包括全息原理、Ads/CFT 等在内的一系列理论，而根据广义相对性原理，一个自由落体到黑洞
中的物体，不会感觉到任何变化，所以黑洞内部其实和通常的时空流形没有本质区别，于是上述针对黑洞
提出的思想具有非常强的普适性。所以，对于黑洞热力学的探讨是现代理论物理中非常重要的部分。
如果不额外指出，我们都令 h̄ = 1, c = 1, G = 1，保留玻尔兹曼常数 kB。
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2 黑洞热力学

黑洞热力学起源于上个世纪 70 年代初。

2.1 面积定律

1971 年，Hawking 首先证明了面积不减定律，即事件视界的面积顺时间方向不会减小：δ+A ≥ 0，它
在 2021 年首次由 LIGO 分析双黑洞合并过程的引力波所证实。
我们举一个例子说明它，考虑最简单的 Schwarzchild 黑洞，视界面积：

A+ = 4πr2s = 16πM2 (1)

两个质量分别为 m 和 M 的 Schwarzchild 黑洞融合后，忽略引力辐射，其面积变化为：

δA = 16π[(m+M)2 −m2 −M2] = 32πMm ≥ 0

2.2 黑洞的熵

1972 年，Bekenstein 以充满物理直觉的方式证明了黑洞具有熵 [1]：以 Schwarzchild 黑洞为例，考虑
一个能量为 2π

λ
的光子，让它落入黑洞，我们要求它携带的信息越少越好，所以需要让其波长尽可能长以

避免关于“从何处落入黑洞”的信息，于是 λ = rs = 2M，此时光子只携带关于左/右旋光的信息，即 1bit。
落入黑洞后，黑洞质量增加：δM = 2π

λ
= π

M
，所以视界面积变化：δA = 4πδr2s = 8πrsδrs = 32πMδM =

32π2M 1
M

= 32Gπ2，这是一个常数，假如把这个东西作为差到一个系数的黑洞熵的单位，则熵恰好增加
1bit，于是贝肯斯坦猜测黑洞的熵正比于其视界表面积，并给出了补偿量纲的普朗克量： A

l2pl
。可以认为 3

维黑洞的表面上有许多个边长为 Planc 长度 lpl 的格子，每个格子代表一个自由度。

图 1: Entropy of black hole

熵与面积的关系也为一年前 Hawking 的工作赋予了更实际的意义：事件视界面积顺时方向不减就等
于热力学第二定律。
黑洞具有正比于其边界测度的熵是一个不平凡的性质。因为一个时空区域内，最大熵态就是黑洞，所

以黑洞的熵实际也是这块时空区域最大的熵，假如没有任何引力作用，一个体积内携带的最大信息量是正
比于其体积 V 的，如对自旋系统，晶格长度为 a，总的状态态数为 2

V
a3，相应的熵 S ∼ V

a3 ln2 = A l
a3 ln2，

当 a 足够小，或者系统的长度 l 足够大时，总会超过 A，但加入引力后，就会对系统施加一个上限。
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在 Bekenstein 之前，由于黑洞无毛定理——只需要质量、角动量以及电荷就可以完全确定一个黑洞
——人们普遍认为落入黑洞的物体其熵也会消失，所以整个宇宙的熵会因此减小，也就是热力学第二定律
在黑洞处失效，但 Bekenstein 把一切颠倒过来，认为热力学第二定律是完备的，需要修改的是人们对于黑
洞进而是对引力的认识。

2.3 黑洞热力学定律

1973年，Hawking和 Carter确认了黑洞熵前的常数系数 1
4
，并完整地提出了黑洞热力学四大定律 [2]：

第零定律：对于一个渐进平直的稳态黑洞体系，其表面引力 κ+ 是一个常数；
第一定律：

dM =
κ+

2π
d
A+

4
+ Ω+dJ + V+dQ

广义第二定律：

δ+(S0 +
A+

4
) ≥ 0

第三定律：不能通过有限次操作把黑洞表面引力降到零。
它们与经典热力学的类比是显然的，我们强调一些与黑洞相关的方面。

2.4 Hawking 温度

结合第零定律与第一定律，很容易看出温度实际上被定义为 T = κ+

2π
，这就是著名的 Hawking 温度，

尽管在 1973 年的时候 Hawking 本人更多地认为这不过是类比，但 1975 年时，他发表了其最著名的论文，
利用弯曲时空中的 Klein-Gordon 场强有力地证明了黑洞会向外辐射粒子，从而真正地给出了关于黑洞温
度的理论。
定性地将，我们可以考虑由于量子场的涨落，在视界附近会出现一对正反粒子对，其中反粒子被黑洞

吸收，造成其视界面积减小，正粒子得以逃逸，从而产生辐射。用量子场论的语言来说，就是由于时空的
弯曲性，不同观测者定义的产生/湮灭算符不同，于是有不同的真空态 [3]。
我们接下里来简要证明它，但 Hawking 的原始论文过于复杂，我们选择另一种更加深刻而简洁的证

明方式。

图 2: Hawking temperature

2.4.1 虚时间

回顾 Heisenberg 不确定性原理：∆t∆E ≥ 1
2
，我们看到若体系具有时间周期 ∆t，则有相应的能量涨

落，而后者与热力学中的配分函数有关，所以时间周期和温度具有关联。进一步讲，处于正则系综的体系，
其密度矩阵为：ρ = 1

Z
e−βH，而量子体系的时间演化算子为 e−iHt，两者具有很高的相似性。
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我们现在引入虚时间：τ = it，这一步也称为 Wick rotation，则 Heisenberg 表象下算符的时间演化
变为：eτHAe−τH。
当一个虚时的热力学系统具有关联函数：

G(τ, x) = −Tr[ρ(T (Aτ,xB0,0))] (2)

= − 1

Z
Tr(e−βHAτ,xB0,0)

= − 1

Z
Tr(B0,0e

−βHAτ,x)

= − 1

Z
Tr(B0,0e

−βHAτ,xe
βHe−βH)

= − 1

Z
Tr(B0,0Aτ−β,xe

−βH)

= − 1

Z
Tr(e−βHB0,0Aτ−β,x)

= −Tr[ρ(T (Aτ−β,xB0,0)]

= G(τ − β, x) (3)

上式中我们反复用到了求迹时的循环性，最后得到结论：任何一个具有温度（ 1
βkB
）的系统，具有虚时间

周期 β，这反过来说也成立 [4]。

2.4.2 Unruh 效应

Unruh 在 1976 年证明了，一个均匀加速的观测者会在闵氏时空看到处于热态的粒子，我们以虚时周
期的方法来证明 [5]。
对于球坐标系下 Minkovsky 时空，忽略球面部分，惯性观测者由 t 与 r 两个量标定，而 Minkovsky

时空里的一个均匀加速观测者也可以由两个量标定：加速度 a 和速度 η，若 a 不同则是不同的均匀加速
者，而随着时间增加，速度 η 唯一确定。
考虑径向加速的观测者，设其坐标为 (T,R, 0, 0)，根据 −Ṫ 2 + Ṙ2 = −1，以及加速度 a2 = −T̈ 2 + R̈2

可以解出：t = 1
a
sinh(τa), r = 1

a
cosh(τa)，其中 τ 为固有时，记 1

a
= ρ, τa = η，则加速观测者的线元为：

ds2 = −ρ2dη2 + dρ2 + ρ2cosh2τdΩ2 (4)

这被称为 Rindler 坐标。
此时，对 τ 做虚时转化：θ = iτ

ρ
= iη，则线元的前半部分变为：ρ2dθ2 + dρ2，我们看到这恰好就是

Euclidean 时空的球坐标线元，所以我们来到了 Euclidean 黑洞，如果 θ 的周期不是 2π，就会有“conical”
奇点，于是 τ ∼ 2πρ，所以 β = 2π

a
，即 T = a

2π
。这就是 Unruh 温度。

它的起源是什么？注意到 Minkovsky 时空里任何一个加速观测者都会感受到一个“视界”，他只能观
测到部分时空，而对另一部分时空信息的忽略就带来了熵，进而产生温度。
在 2019 年，清华大学的胡家忠等人将原子凝聚的演化过程等效为向加速系转换，具体模拟了其物质

波，发现其局部与 Boltzman 分布等价，证明了 Unruh 温度的存在性 [6]。

2.4.3 Schwarzchild 黑洞

我们以 Schwarzchild 黑洞为例，是因为它比较简单，但这个方法适用于所有黑洞。
其线元为：

ds2 = −fdt2 + f−1dr2 + r2dΩ (5)

其中 f = 1− rs
r
，rs = 2M 为视界半径。
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图 3: Unruh Temperature

我们在视界附近对 f 进行展开：f(r) ≈ f(rs) + f ′(rs)(r − rs) = f ′(rs)(r − rs)，注意到表面引力 κ+

的定义为：

ξµ∇µξ
ν = κ+ξ

ν (6)

取 ξµ = tµ + rµ 作为 in-going 的 killing 矢量，则可以计算出 κ = ∂f
2∂r

|rs，所以

f(r) ≈ 2κ+(r − rs) (7)

令 dρ = dr√
f
，则 ρ =

√
2(r−rs)

κ+
，将这些式子带入线元得到：

ds2 = −ρ2κ2
+dt

2 + dρ2 + ... (8)

令 κ+dt = dη 则得到 Rindler 坐标。
我们同样对 t 做虚时转化：θ = iκ+t，然后得到 Hawking 温度：T = κ+

2π
，跟之前从经典热力学得到

的结果一致。
我们注意到 κ+ 的含义是在无穷远参考系下单位质量物体在视界附近受到的引力，也就是无穷远观测

看到的视界附近的加速度，所以 Hawking 温度也是由无穷远观测者定义的，对非无穷远的观测者，其观
测到的 Hawking 温度要乘一个红移因子：T ′ =

√
f(r)T，或者等价地将坐标时 t 换成观测者的固有时 τ。

对足够接近黑洞表面的观测者而言，视界都像是无限大的平面，引力近乎均匀，所以等价于均匀的加
速度，跟 Unruh 温度的条件一致，所以也有相同的解释，即熵来自于对可视宇宙外的时空的无知。
对于 Schwarzchild 时空，这正是 Kruskal 最大延拓下的白洞以及对偶的时空，尽管 Hawking 原始论

文的观点并非如此，而且通常人们认为白洞解非物理，所以不予考虑。

图 4: Euclidean black hole

2.5 极端黑洞

既然黑洞的温度正比于表面引力，则第三定律就是说不可能通过有线步骤把黑洞的温度降为 0k，这
跟热力学第三定律完全一致。这个定律对黑洞做出了什么限制？我们先来看看温度为零的黑洞是什么样子
的。
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以 RN 黑洞为例，其度规为：

ds2 = −fdt2 + f−1dr2 + r2dΩ2 (9)

其中 f = 1− rs
r
+ (Q

r
)2, rs = 2M。

其视界半径为：

r± =
1

2
(rs ±

√
r2s − 4Q2) (10)

表面引力为：

κ+ =
∂f

2∂r
|r+ =

r2+ − r2−
2r2+

(11)

若其为零，则有 r+ = r−，即 r2s − 4Q2 = 0，推出：

M2 = Q2 (12)

这就是极端黑洞，所以这个定律是说无法通过有限步骤达到极端黑洞。
不过它本身有很多有趣的性质，诸如 Vafa 等人就曾利用弦理论推导了极端黑洞的熵公式 [7]。
以上是对黑洞热力学的简短综述，接下来我们研究具有负温度的非引力系统，之后再考虑具有负温度

的引力系统。

3 负温度

在物理学中，Kelvin 温度 T 被定义为：当其他条件不变时，内能对熵的偏导数：T = ∂S
∂U

|x。通常来
说，随着内能增加，能级会变多，系统可能的微观状态数随之增加，所以熵也增加，温度总是大于零的。
但也存在一些特殊系统——如核自旋系统，其内能和熵的变化不同步，也就产生了负温度。

3.1 核自旋系统

上个世纪 50 年代，Pound，Purcell 等科学家研究了 LiF 晶体的核自旋系统的性质 [8]。核自旋系统
与外加磁场达到平衡时，总磁矩平行于外磁场，若迅速翻转外磁场的方向，则核自旋系统就会处在一个高
能非稳态状态——总磁矩与外磁场反向长达数分钟（而室温下 LiF 晶格-自旋相互的弛豫时间是 5min 左
右，核自旋相互作用的弛豫时间是 10−5s），此时假想翻转某一个原子核，会增大熵但减小内能，于是核自
旋系统具有着负温度。
核自旋系统是一个近独立的定域系统，适用于玻尔兹曼分布，根据 al = ωle

−α−βEl，当绝对温度 T ≥ 0

时，αl 反比于 El，即能级越高，粒子数目越少，当 T < 0 时，αl 正比于 El，即能级越高，粒子数目越多
——即粒子数反转，并且温度越负，这个趋势越显著。

3.2 谐振子

物质在温度趋于 0k，若趋于低熵态（甚至 S=0），大量粒子将在动量空间凝聚，类似于玻色-爱因斯坦
凝聚，而这种特殊的物态只有玻色子可以拥有，而谐振子体系正是最简单的玻色子体系，所以具有能量上
限的谐振子体系将是研究负温度的良好模型。
我们先考虑最简单的一维谐振子，设有 M 个最大能级为 Nh̄ω 的谐振子组成一个系统，略去真空能，

系统总能量为 E =
∑

M nM h̄ω，若我们给定 E = Xh̄ω，X 为 0 到 MN 之间的任一整数，则其对应的状
态数就相当于将 X 分解为 M 个最大值不超过 N 的整数的分解方式数，记这个方式数为 PX(N,M)，体
系的熵可以表示为：

S = kBlnΩ = kBlnPX(N,M) (13)
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图 5: nuclear spin system

这个体系实际上就是核自旋系统的拓展，因为在后者中，核子的个数 N 就是谐振子的个数，其与外
磁场同向或反向使得它有两个能级 E = ±µB，在现在的谐振子体系下，我们把 E 放宽为 N 个均匀划分
的能级，但结果不会改变。当 X=0 时，所有谐振子的能量都是 0，S = 0，当 X=MN 时，所有谐振子的
能量都是 Nh̄ω，S = 0，跟核自旋系统一致。
我们以 M=3，N=4 为例作出 S 与 E 的关系图，可以看到，在 E = 6h̄ω = 3×4

2
h̄ω 时有最大熵，此时

对应的状态数最多：

图 6: S 与 E 的关系

对于更一般的 M 和 N 的情况，这就是有限制的整数分解问题，或者推广的 Hardy-Ramanujan 公式。
我们期望 T = ±∞ 出现在 X = NM

2
处，即 PX(N,M) 在此处有极值，随着 X 继续增加 PX(N,M)

将会减小，出现负温度态，并且 PX(N,M) = PMN−X(N,M)。
因为根据 Heisenberg 不确定关系 ⟨∆X2⟩⟨∆P 2⟩ ≥ h̄2

4
，在一个给定大小的系统中，单个谐振子总有一

些能量起伏，为了避免这种起伏影响我们的考虑，我们总是认为相较于谐振子数而言，其能量上限足够大，
取 |N −M | = O(

√
N +M)，且 N,M → +∞，则有公式 [9]

PX(N,M) ∼ CN
N+M

√
6

πNM(N +M + 1)
exp[− 6(n−NM/2)2

NM(N +M + 1)
](1 +O(1)) (14)

其中“an ∼ bn”意为 limn→∞
an

bn
= 1。

我们注意到，当 M 和 N 确定时，PX(N,M) 的行为完全由指数部分决定，而它是关于 NM
2
对称的偶

函数，符合我们的预期，所以能量有上限的谐振子体系是拟合负温度的优良模型。

3.3 Remarks

通过热力学第零定律的方式，我们可以比较正负温度的“冷热程度”：让正温度系统与负温度系统相接
触，由于负温度系统具有更高的能量，则能流是指向正温度系统的，所以负温度系统实际上正温度系统更
加热，同理也可以比较负温度之间“冷热程度”，最终我们发现，温度从低到高的序列应该是：0K, 1K...+
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图 7: N=1000,M=10

∞K,−∞K...− 1K,−0K，换句话说，从一个负温度 T 冷却的过程是经过 ±∞K，而不是 0K，热力学第
三定律仍是成立的。所以负温度是对传统温度的自然拓展，并没有违背热力学三大定律。
对于负温度系统，我们需要注意的是：

1: 系统能谱需要有上限的，因为只有如此才会有低熵的最高能态，从而在转换过程中出现负温度;

2: 必须有外场存在，因为孤立体系的熵不会自发减小，热运动和相互作用会重新分配能量，使体系达到
稳定平衡，负温度的持续存在必须有外场介入;

3: 在两端的低熵处，温度都趋于 0k（0+, 0−），它们类似于玻色-爱因斯坦凝聚态，而这种特殊的物态自
然只有玻色子可以拥有，而谐振子体系正是最简单的玻色子体系，所以具有能量上限的谐振子体系
将是研究负温度的良好模型；

现在回到黑洞，对于这个奇异的天体，最好把温度看做是反映熵与内能依赖关系的量，而非直观的
“冷热程度”。

Hawking 温度完全由表面引力 κ+ 决定，而 κ+ 由完全由度规决定，所以温度与度规一一对应，于是
寻找负温度的黑洞意味着寻找特殊的度规。经典的 Schwarzchild、Kerr、RN黑洞等都不可能有负温度，因
为它们的 Hawking 温度完全唯一被决定，任何不想通过修改其定义来引入负温度的行为，都必然带来非
物理的东西，诸如负能量、裸奇点等等。
我们的研究目标是一个特殊的黑洞。

4 Exotic-BTZ 黑洞

4.1 BTZ 黑洞

尽管我们的时空是 3+1 维的，但低维时空也常常作为简化模型被研究。
考虑 2+1 维时空，Riemann 曲率张量 Rρ

µσν 的自由度为
32(32−1)

12
= 6，而 Ricci 张量 Rµν 的自由度

3(3+1)
2

= 6，所以后者完全决定前者，同时根据爱因斯坦场方程，能动量张量 Tµν 又完全决定 Rµν，所以此
时空完全被物质决定，而没有自由传播的维度，当宇宙学常数 Λ 为负时，存在黑洞解——BTZ 黑洞 [10]。
考虑不带电的情况，它的作用量为：S = 1

2π

∫ √
−g(R+2l−2)d2xdt+B，其中 B 为边界项，l−2 = −Λ，

称为 AdS 半径，BTZ 黑洞的时空具有常负曲率，就像一个 Pincare 圆盘一样。其线元为：

ds2 = −N2dt2 +N−2dr2 + r2(Nϕdt+ dϕ)2 (15)

其中 N2 = −8m+ r2

l2
+ 16j2

r2
，称之为“squared lapse”，Nϕ = −4j

r2
，称之为“angular shift”，−∞ < t < +∞，

0 ≤ ϕ < 2π，m 和 j 分别是以是 h̄ 为单位的质量 M 和角动量 J。
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图 8: Esher’s disc

当 m > 0 时，这是一个旋转黑洞解，它局域等价于一个 AdS 时空，当 m = −1, j = 0 时，度规变为
ds2 = −(1 + r2

l2
)dt2 + (1 + r2

l2
)−1dr2 + r2dϕ2，在真正意义上成为 AdS3 解，对于 m ̸= −1 的其他解，都存

在非物理的裸奇点。物理解从 m > 0 到 m = −1 的跳跃被称为“mass gap”，所以这个 AdS 解也被称为
“thermal soliton”。

它的视界半径为：

r± = l

√
4m(1±

√
1− (

j

ml
)2) (16)

显然，仅在 j ≤ ml 时有视界，所以角动量有上限。但这不是我们想要的解，因为负温度的存在要求能
量有上限，然而，我们注意到若能交换角动量和质量的位置，则满足要求，而这样的黑洞也存在，称之为
Exotic BTZ 黑洞。

4.2 Exotic BTZ 黑洞

“Exotic”是 Witten 在一篇论文中偶然使用的称呼方式 [11]，以表示这种黑洞很奇怪。在目前已知的
理论中，它存在于 2+1 维时空里宇宙学常数 Λ = 0 的渐进 AdS 情况（BCEA 引力 [12]），4+1 维 AdS 时
空 [13]，以及在“gravitational Chern-Simons”[14] 理论中的 BTZ 黑洞。
它的度规形式与 BTZ 黑洞完全一致，但是对于 m 和 l 的诠释不同：

M =
xj

l
(17)

J = xlm (18)

其中 x是一个参数，根据 Exotic BTZ黑洞的物理背景而有所不同，如在 BCEA引力中 x=1，4+1维 AdS
时空中 x 是 U(1) 规范场的场强，在引力 Chern-Simons 理论中正比于一个拓扑学量。

我们看到这个黑洞奇怪的地方：由于 j 可以为零，m 不能为零，所以 M 可以为零，J 不能为零，也
就是这个黑洞可以没有质量，却一直在旋转，其 M 和 J 的关系恰好与经典的 BTZ 黑洞对偶，对于这个
黑洞的所有问题，都可以借由这种对偶从 BTZ 黑洞得到。我们知道在 BTZ 黑洞中 J 有上限，否则就会
出现裸奇点，对偶到这里，就是 M 有上限，所以就会得到负温度。具体过程如下：
因为视界半径的计算公式不变，所以 j ≤ ml 仍成立，此时推出

M2l2 − J2 = x2(j2 −m2l2) ≤ 0 (19)

当 x > 0 时，质量有上限，在极端黑洞的情况下达到最大值 Ml = J，当 x < 0 时，Ml > J，此时没有能
量上限，但有下限：−J

l
。

M 和 J 为什么长成这样决定于具体的物理背景，但我们可以根据之前所说的黑洞热力学定律计算相
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应的物理学量：

r± =

√
4l

|x|

√
J ±

√
J2 −M2l2 (20)

κ+ =
1

2

∂N2

∂r
=

(r2+ − r2−)

l2r+
(21)

T =
κ+

2π
=

(r2+ − r2−)

2πl2r+
≥ 0 (22)

Ω+ = −Nϕ =
r−
lr+

(23)

可以求得其热容，然后由热力学第一定律可以计算出相应的熵：

S =
∂M

∂T
|J = x

2πr−
4

(24)

我们发现，尽管熵确实正比于 A
4G
，但面积是内视界的面积，Detournay等人证明了 [15]，等人证明了，

在正温度下，对黑洞的微扰会减少其内视界面积，所以这样的熵尽管符合第一定律，却不符合热力学第二
定律，我们需要寻找合适的方式重新定义它，让之与外视界产生关联。
根据 Mu-In Park 的论文 [16]，我们引入正比于外视界的新的熵：

S′ = |x|2πr+
4

(25)

前面的 |x| 是为了保留对 x 的依赖，并保证熵为正。因为熵为负的解是白洞，而这不是我们考虑的对象。
反解出温度：

T ′ = ϵ
h̄(r2− − r2+)

2πl2r−
(26)

其中 ϵ 代指 x 的符号。不难验证，这个修改仍然满足热力学第一定律。再根据热力学第一定律反解出角动
量：Ω′ = −Nϕ = r+

lr−
。

要保证视界的存在，所以
√
1− ( j

ml
)2 ≥ 0，内视界半径 r− 永远小于 r+，否则会违背“宇宙监督者”

假说。
于是此时我们需要关心的就是 x 的正负号，根据之前的证明，当 x > 0 时，质量有上限，应该出现负

温度，且此时的 T 也恰好为负，当 x < 0 时，T 是正的，此时也相应没有质量上限。
我们以 j（M）为横坐标，m（J）为纵坐标绘制温度密度图，其颜色越红相对温度就越高，灰色区域

为具有裸奇点的区域，M < −J
l
，M > J

l
：

需要要明确的是，正如在核自旋系统中，负温度的出现是“非自然的”，需要迅速改变外磁场方向，具
有负温度的黑洞也“非自然”，势必需要某种外部作用使其达成这一状态。

4.2.1 负温度过程

为了获得一个比较直观的认识，我们来考虑具体的演化过程，假设黑洞一开始处在最低能量态，即
M = −J

l
，这是一个束缚态，之后它将经历的过程如下：

1: M = −J
l
，此时内外视界重合，为第一个极端黑洞解，T = 0K，S = 2π

√
|x|Jl
4
；

2: M 从负值向 0 增加 (M2 减小)，内视界开始缩小，外视界开始增大；

3: M = 0时，内视界半径 r− =
√

4l
|x|

√
J − J = 0，即其缩小到消失，外视界半径达最大值，r+ =

√
4l
|x|2J，

T → ∞，S = 2π
√

|x|2Jl
4
；

4: M 从 0 向正值继续增加 (M2 增加)，外视界减小，内视界出现并向外视界靠近，这段过程即是负温
度过程；
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图 9: 温度密度

5: M = J
l
时，两个视界再次重合，达到第二个极端黑洞态，T → 0−，整个过程停止。

从整个过程来看，相当于经历了一个内外视界分离又靠近直至合并的过程，在靠近过程中出现负温度。
正温度部分，增加质量会减小内视界的大小，这正是我们认为正比于内视界面积的熵不合适的一个佐

证。
从热力学过程上而言，它与核自旋系统一致，都是经由 ±∞ 从一个温度零点到达另外一个温度零点，

但对于 Exotic BTZ 黑洞，在温度零点处，熵并不为零，这是与核自旋系统的一个不同。
我们将修改后的熵为显式地表示为 M 和 J 出来：

S′ = 2π

√
Jl

4|x|
(1 +

√
1− (

Ml

J
)2) (27)

然后以 M为横坐标，S为纵坐标作图，红线 J = l，绿线 J = 1.5l，蓝线 J = 2l，其图像与上述讨论吻合：

图 10: 熵与 M 的关系

最后，我们必须要指出的是，Exotic BTZ 黑洞的负温度是为了解决传统方法得到的熵不正比于外视
界面积的问题而提出的解决办法所带来的，但由于我们没法直接观测到这样的黑洞，目前还存在对此不同
的解决方法，如 Townsend 等人就以 Exotic BTZ 黑洞的奇宇称作用量模型提出了同时与内外视界都有关
系的熵 [17]：S = 2π

4
(αr− + γr+)，通过不同的 α 和 γ 来限制熵的行为。然而，正如我们从核自旋系统得

到的启示，任何一个能量有上限的体系都可以容许负温度出现，我们更加倾向于认同 Park 的工作，只是
负温度的具体机制和更深刻的内涵还尚待研究。
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5 黑洞相变

Boltzman 曾言：“若可以加热一个东西，则它有微观结构”。由于黑洞的温度正比于其表面引力，而后
者由正比于视界半径，改变质量等量就可改变温度，所以黑洞是可以被加热的，于是它应该有微观结构。
对其微观结构的理解必然导致我们对于其熵的更深刻的认识，然而遗憾的是，目前尚没有得到普遍认

同的理论模型能完全描述其微观结构，但自从 1983 年，Hawking 和 Page 发现在 AdS 时空下黑洞存在相
变的可能，于是研究黑洞的相变就成为了一个重要的课题和工具。
其思想的核心是，假如 f 有多值性，即不同的 r可能会给出相同的 f，则依赖于 f 的表面引力 κ+ = ∂f

2∂r

也有多值性，进而是温度，倘若定义 F = M − TS，则自由能也会有多值性。这意味着在某个确定的温度
处，会有多个不同大小的黑洞共存，它们具有不同的自由能，这跟热力学中的一阶相变一致，我们还可以
进一步研究 Cv 等量，考虑其高阶相变。
一般情况下，f 都是 r 的单值函数，如 Schwarzchild 解，Kerr 解，但在诸如腔内黑洞或者 AdS 时空

中，f 会多一项正比于 r2 的项，如对 AdS −RN 黑洞，f = 1− 2M
r

+ Q2

r2
+ r2

l2
，这就带来了多值性。注意

到，对于 BTZ 黑洞的 N2 = −8m+ r2

l2
+ 16j2

r2
，显然具有多值性，所以存在相变，这个黑洞的相变在 1992

年首次提出 BTZ 黑洞后就被广泛研究了。
然而，BTZ 黑洞的相变是 M > 0 的部分和 M = −1 的部分之间的，“mass gap”的存在使得不存在

一个连续的热力学能量作为相变的标志性函数，为了解决这种情况，“off-shell”自由能被提了出来 [18]。
考虑到 Exotic BTZ 黑洞与 BTZ 黑洞具有高度的对偶性，它也应该有相变，然而由于 Exotic BTZ 黑

洞并没有“mass gap”的问题，并不需要引入新的量来研究，我们以 F = m− TS 做出了 Exotic BTZ 黑
洞的自由能曲线，横坐标为温度，发现其同样在 m=-1 处取到极值，然而需要注意的是，此时的 m 实际
上是 J。

图 11: F-T

5.1 Ruppeiner 几何

Ruppeiner 几何的核心思想是将涨落的概率与几何距离联系起来，A 态涨落到 B 态的概率越小，它们
之间在 Ruppeiner 几何上的距离就越长，度规被定义为：

gRµν = − ∂2S

∂xµ∂xν
(28)

基于此，可以计算 Ricci scalar R。若 R < 0，则表示 Ruppeiner 几何具有负曲率，相当于体系具有吸引
力，反之若 R > 0，则体系具有排斥力。

6 结尾

截止到目前为止，我们小组从得到这个题目，开始学习广义相对论已经统计物理，然后开始搜寻论文
并总结，试着提出一些想法，过了将近一年，在学习和思考的过程中，我们受益匪浅，对于广义相对论和
热力学，甚至是量子力学都有了更加深刻的认识。
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我们的下一步目标就是进一步探究 Exotic BTZ 黑洞，仔细考察其提出的不同物理背景，思考具体的
能够承载负温度过程的物理机制。在调研时，我们发现许多对于黑洞的讨论都使用了共形场论，包括对
Hawking 辐射的理解也跟共形反常有关，所以我们还打算系统学习 CFT 相关知识。

如果在未来，能够对这个课题有进一步的认识就再好不过了。
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